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Abstract

The square integrable basis set representation of the resolvent of the asymptotic
three-body Coulomb wave operator in parabolic coordinates is obtained. The
resulting six-dimensional Green’s function matrix is expressed as a convolution
integral over separation constants.

PACS number: 03.65.Nk

1. Introduction

The three-body Coulomb continuum problem has represented up till now a very difficult
problem which is present in many areas of physics. The best known and widely used
approximate solution is expressed in terms of a product of three Coulomb waves, the so-
called C3 model [1–4] (also called the 3C or Brauner–Briggs–Klar (BBK) model). The
C3 wavefunction satisfies the correct asymptotic conditions, when the three particles are
far away from each other (the so-called region �0). The C3 wavefunction has been, and
is currently, successfully used as the final-state wavefunction for calculating cross sections
for electron-impact double ionization of helium (so-called (e, 3e) processes) [5–7], and the
calculation results are in good agreement with the experimental [8] both in shape and in
absolute value. On the other hand, the C3 wavefunction describes poorly the behavior at
intermediate interparticle distances and when one particle is far away from the other two.
The investigation of the role of the description of initial and final states in (γ, 2e) and (e, 2e)

collisions allow the authors of [9] to conclude that collisional processes cannot be easily used
as a conclusive test for the quality of approximated wavefunctions and the overall agreement
with absolute (e, 3e) experiment data is fortuitous.

The C3 wavefunction is obtained by neglecting all mixed derivatives of the three-body
Hamiltonian written in generalized parabolic coordinates [1]. Many improvements to the
C3 model have been developed by considering in some approximate way of the neglected
terms of the kinetic energy. Most of them use the same form for the wavefunction, i.e. the
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product of three two-body Coulomb wavefunctions. These modifications introduce position-
or velocity-dependent effective charges (see, e.g., [10, 11]). Besides, modifications in the
relative momenta of the particles have been introduced in [12] to describe the three-body
Coulomb wavefunction in the regions �α where the mutual distance between particles β and
γ is much smaller than the distance between their center of mass and the particle α (see also
[13] and references therein).

Some attempts to go beyond the C3 model have also been made. The author of [14]
has suggested to express the three-body Coulomb continuum wavefunction in the ‘inner’
zone (where the potential energy dominates the kinetic one) as a linear superposition of C3
wavefunctions with different relative momenta between the particles. In [15–17] the �2

model has been proposed and developed. Within this approach an approximate analytical
wavefunction is expressed in terms of the hypergeometric function of two variables. Using the
representation of the �2 model wavefunction as a series expansion in powers of coordinates
the authors of [15–17] have shown that the C3 wavefunction is included as a first order
in this expansion. The authors of [17] have also pointed out that a Faddeev-type equation
can be derived for the three-body Coulomb continuum wavefunction considering the Green’s
function of the asymptotic separable Coulomb wave operator and taking an approximation to
the non-orthogonal part of the kinetic energy as the components of the perturbed potential.

In the previous paper [18] we have attempted to apply the J -matrix method [19] (see
also [20] and references therein) for solving numerically the three-body Coulomb continuum
problem. Within this version of the J -matrix formalism, the three-body Coulomb continuum
wavefunction is expanded in an infinite series of six-dimensional L2 basis functions. Then the
initial Schrödinger equation is transformed into a discrete analog of the Lippmann–Schwinger
equation. However, the corresponding Green’s function was not derived in [18]. The goal
of this paper is to obtain the expression for the six-dimensional Coulomb Green’s function
matrix elements.

Below, we present some relations needed for understanding the separable approximation
to the Schrödinger equation for the three-body Coulomb problem.

Consider the Schrödinger equation for a three-body Coulomb system with masses
m1,m2,m3 and charges Z1, Z2, Z3, respectively,[

− 1

2μ12
�R − 1

2μ3
�r +

Z1Z2

r12
+

Z2Z3

r23
+

Z1Z3

r13

]
� = E�. (1)

Here R and r are the Jacobi vectors

R = r1 − r2, r = r3 − m1r1 + m2r2

m1 + m2
, (2)

rls = rl − rs is the relative position variable, rls = |rls |. The reduced masses are

μ12 = m1m2

m1 + m2
, μ3 = (m1 + m2)m3

m1 + m2 + m3
. (3)

The eigenenergy E is given by E = 1
2μ12

K2 + 1
2μ3

k2. The ansatz

� = ei(K·R+k·r)� (4)

removes the eigenenergy giving the equation for �:[
− 1

2μ12
�R − 1

2μ3
�r − i

μ12
K · ∇R − i

μ3
k · ∇r +

Z1Z2

r12
+

Z2Z3

r23
+

Z1Z3

r13

]
� = 0. (5)
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Let D denote the operator in the square braces in (5). This operator is considered in terms of
parabolic coordinates introduced by Klar [1]

ξ1 = r23 + k̂23 · r23, η1 = r23 − k̂23 · r23,

ξ2 = r13 + k̂13 · r13, η2 = r13 − k̂13 · r13,

ξ3 = r12 + k̂12 · r12, η3 = r12 − k̂12 · r12,

(6)

where kls = klms−ksml

ml+ms
is the relative momentum vector between the particles l and s, k̂ls is the

unit vector: k̂ls = kls

kls
, kls = |kls |. Then D is expressed as a sum of two parts

D = D0 + D1, (7)

where D0 is given by

D0 =
3∑

j=1

1

μls(ξj + ηj )
[ĥξj

+ ĥηj
+ 2kls tls], (8)

for j �= l, s and l < s. Here tls = ZlZsμls

kls
, μls = mlms

ml+ms
; the one-dimensional operators ĥξj

and

ĥηj
are defined by

ĥξj
= −2

(
∂

∂ξj

ξj

∂

∂ξj

+ iklsξj

∂

∂ξj

)
, ĥηj

= −2

(
∂

∂ηj

ηj

∂

∂ηj

− iklsηj

∂

∂ηj

)
. (9)

D0 is the leading term which provides a three-body continuum wavefunction that satisfies
exact asymptotic boundary conditions for Coulomb systems in the limit of all particles being
far from each other [1]. The operator D1, which contains all mixed second derivatives

∂2

∂ξj ∂ξl
, ∂2

∂ηj ∂ηl
, j �= l and ∂2

∂ξj ∂ηl
(see, e.g., [21]), is regarded as a small perturbation which does

not violate the boundary conditions [1].
Further, if we neglect D1 from equation (5) we obtain the approximate equation

D0� = 0, (10)

which is separable with an infinite number of solutions [1]

� =
3∏

j=1

fj (ξj , ηj ) (11)

and each of the functions fj (ξj , ηj ) is a solution of equation [1]:
1

μls(ξj + ηj )
[ĥξj

+ ĥηj
+ 2kls tls]fj (ξj , ηj ) = −Cjfj (ξj , ηj ). (12)

The separation constant Cj satisfy the constraints [1]

C1 + C2 + C3 = 0. (13)

The solution fj is represented in the form fj (ξj , ηj ) = uj (ξj )vj (ηj ), and the functions uj (ξj )

and vj (ηj ) satisfy the equations

[ĥξj
+ 2klsAj + μlsCj ξj ]uj (ξj ) = 0,

[ĥηj
+ 2klsBj + μlsCjηj ]vj (ηj ) = 0,

(14)

with the constraint

Aj + Bj = tls . (15)

The general solutions of (14) can be obtained by transforming the confluent hypergeometric
equation (see, e.g., [21]). Thus, the general solution of (10) is expressed in terms of a
product of six Kummer hypergeometric functions (the so-called C6 model wavefunction �C6

[21]). By setting specific values for separation constants Aj , Bj , Cj solutions with a particular
asymptotic behavior can be obtained. For instance, putting Cj = Bj = 0 and Aj = tls , the

3
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C3 wavefunction with pure outgoing behavior is obtained [1]:

�C3 =
3∏

j=1

1F1(itls , 1;−iklsξj ). (16)

The exact three-body Coulomb continuum wavefunction � satisfies the six-dimensional
differential equation

[D0 + D1] � = 0. (17)

Then, multiplying (17) by
∏3

j=1 μls(ξj + ηj ) yields [18]

[ĥ + V̂ ]� = 0 (18)

where

ĥ =
3∏

j=1

μls(ξj + ηj )D0 = μ13(ξ2 + η2)μ12(ξ3 + η3)ĥ1

+ μ23(ξ1 + η1)μ12(ξ3 + η3)ĥ2 + μ23(ξ1 + η1)μ13(ξ2 + η2)ĥ3, (19)

ĥj = ĥξj
+ ĥηj

+ 2kls tls (20)

and

V̂ =
3∏

j=1

μls(ξj + ηj )D1. (21)

In turn, equation (18), in view of the boundary condition

� → �C3 or � → �C6, (22)

is transformed [18] into the following Lippmann–Schwinger-type equation:

� = �C3 + ĜV̂ � or � = �C6 + ĜV̂ �, (23)

where Ĝ is the resolvent of the operator ĥ (19). It has been suggested in [18] to treat the
equation (23) within the context of L2 parabolic Sturmian basis set [22]

|N 〉 =
3∏

j=1

φnj mj
(ξj , ηj ), (24)

φnj mj
(ξj , ηj ) = ψnj

(ξj )ψmj
(ηj ), (25)

ψn(x) =
√

2b e−bxLn(2bx), (26)

where b is the scaling parameter. Thus, the wavefunction � is expanded in basis function
series

� =
∑
N

aN |N 〉 . (27)

Then, the projection of (23) onto functions |N 〉 yields an infinite set of equations in the
coefficients aN

a = a(0) − GV a, (28)

where G and V are the matrices with elements 〈N |Ĝ|N ′〉 and 〈N |V̂ |N ′〉, respectively, a is
the vector with components aN , a

(0)
N = 〈N |�C3〉 or a

(0)
N = 〈N |�C6〉.

4
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The problem of calculation of the matrix elements 〈N |V̂ |N ′〉 of the operator V̂

(which contains very involved algebraic functions of the parabolic variables) is beyond the
scope of the present paper. At this stage it will suffice to consider that the short-range
operator V̂ can be approximated by a finite-order matrix V .

In the previous paper [18] the resolvent Ĝj for the two-dimensional operator

ĥj + μlsCj (ξj + ηj ) (29)

has been treated within the context of the basis set (25). In particular, a matrix representation
Gj of the Green’s function Ĝj has been obtained which is formally the matrix inverse to the
infinite matrix [hj + μlsCj Qj ] of the operator (29):

[hj + μlsCj Qj ]Gj (tls;μlsCj ) = Ij . (30)

Here

hj = hξj
⊗ Iηj

+ Iξj
⊗ hηj

+ 2kls tlsIj (31)

is the matrix of the operator ĥj (20) in the basis (25), Iξj
, Iηj

and Ij = Iξj
⊗ Iηj

are the unit
matrices. Qj = Qξj

⊗ Iηj
+ Iξj

⊗ Qηj
, where Qξj

and Qηj
are the matrices of ξj and ηj in

basis (26), respectively.
In this paper, we consider a Green’s function Ĝ associated with the six-dimensional

operator ĥ (19). Namely, we construct a matrix G which is formally inverse to the long-range
operator (19) infinite matrix

h = μ13μ12h1 ⊗ Q2 ⊗ Q3 + μ23μ12Q1 ⊗ h2 ⊗ Q3 + μ23μ13Q1 ⊗ Q2 ⊗ h3. (32)

As we pointed out in [18], the six-dimensional Green’s function matrix G is expressed as the
convolution integral

G = ℵ
∫ ∫

dC1 dC2G1(t23;μ23C1) ⊗ G2(t13;μ13C2) ⊗ G3(t12;−μ12(C1 + C2)), (33)

where Gj are the two-dimensional Green’s functions Ĝj matrices, ℵ is a normalizing factor.
Thus, our problem now is to determine the paths of integration over the separation constants
C1 and C2 in (33) and to find the corresponding normalizing factor ℵ such that the condition

hG = I1 ⊗ I2 ⊗ I3 (34)

holds. For this purpose consider the product hG. From the relation (30) we obtain

hG = ℵ
{∫ ∫

dC1 dC2 [I1 − μ23C1Q1G1(t23;μ23C1)] ⊗ μ13Q2G2(t13;μ13C2)

⊗ μ12Q3G3(t12;−μ12(C1 + C2)) +
∫ ∫

dC1dC2μ23Q1G1(t23;μ23C1)

⊗ [I2 − μ13C2Q2G2(t13;μ13C2)]

⊗ μ12Q3G3(t12;−μ12(C1 + C2)) +
∫ ∫

dC1dC2μ23Q1G1(t23;μ23C1)

⊗ μ13Q2G2(t13;μ13C2) ⊗ [I3 + μ12(C1 + C2)Q3G3(t12;−μ12(C1 + C2))]

}
,

(35)

5
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and hence

hG = ℵ
{∫ ∫

dC1dC2 [I1 ⊗ μ13Q2G2(t13;μ13C2) ⊗ μ12Q3G3(t12;−μ12(C1 + C2))

+ μ23Q1G1(t23;μ23C1) ⊗ I2 ⊗ μ12Q3G3(t12;−μ12(C1 + C2))]

+

[
μ23Q1

∫
dC1G1(t23;μ23C1)

]
⊗

[
μ13Q2

∫
dC2G2(t13;μ13C2)

]
⊗ I3

}
.

(36)

As a first step toward our goal we consider the integrals∫
dCj Gj (tls;μlsCj ) (37)

inside the figure brackets on the right-hand side of (36).
In section 2 completeness of the eigenfunctions of the two-dimensional operator (29)

is considered. In particular, an integral representation of the matrix A which is inverse to
the infinite matrix Q of the operator (ξ + η) in the basis (25) is obtained. In section 3 it is
demonstrated that the integral (37) taken along an appropriate contour is proportional to the
matrix A obtained in the previous section. Finally, section 4 presents a convolution integral
representation of the six-dimensional Coulomb Green’s function matrix.

2. Completeness relations

2.1. The continuous spectrum

Of particular interest are the regular solutions

f (γ, τ, ξ, η) = u(γ, τ, ξ)v(γ, τ, η) (38)

of the system

[ĥξ + 2kt + μCξ ]u(γ, τ, ξ) = 0, (39)

[ĥη + 2k(t0 − t) + μCη]v(γ, τ, ξ) = 0. (40)

Obviously, the regular solutions u and v are proportional to confluent hypergeometric functions
(see, e.g., [21])

u(γ, τ, ξ) = e
i
2 (γ−k)ξ

1F1
(

1
2 + iτ, 1,−iγ ξ

)
(41)

and

v(γ, τ, η) = e− i
2 (γ−k)η

1F1
(

1
2 + i(τ − τ0), 1, iγ η

)
= e

i
2 (γ +k)η

1F1
(

1
2 + i(τ0 − τ), 1,−iγ η

)
, (42)

where

μC = k2

2
− γ 2

2
, τ = k

γ

(
t +

i

2

)
, τ0 = k

γ
t0. (43)

It should be noted that since the representation of the two-dimensional Coulomb Green’s
functions matrix elements [18] involves an integration over τ from −∞ to ∞, in the subsequent
discussion we assume that τ is real. With this assumption it is readily seen that the solutions
(41) and (42) coincide, except for normalization and the phase factors e− i

2 kξ and e
i
2 kη, with

parabolic Coulomb Sturmians treated in [24]. In this case γ plays the role of the momentum

6
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and E = γ 2

2 is the energy. From this we conclude that for γ > 0 the solutions (41) and (42)
correspond to the continuous spectrum of E .

It is readily verified that the solutions u(γ, τ, ξ) and v(γ, τ, η) are expressed by basis set
(26) expansions

u(γ, τ, ξ) = 2
√

2b

2b − i(γ − k)

(
2b − i(γ − k)

2b + i(γ + k)

)iτ+ 1
2

∞∑
n=0

θnpn(τ ; ζ )ψn(ξ), (44)

v(γ, τ, η) = 2
√

2b

2b − i(γ + k)

(
2b − i(γ + k)

2b + i(γ − k)

)i(τ0−τ)+ 1
2

∞∑
n=0

λ−npn (τ0 − τ ; ζ ) ψn(η), (45)

where

θ = 2b + i(γ − k)

2b − i(γ − k)
, λ = 2b − i(γ + k)

2b + i(γ + k)
, ζ = λ

θ
. (46)

The expansion (44) and (45) coefficients contain the polynomials [18]

pn(τ ; ζ ) = (−1)n

n!

�
(
n + 1

2 − iτ
)

�
(

1
2 − iτ

) 2F1

(
−n,

1

2
+ iτ ;−n +

1

2
+ iτ ; ζ

)
. (47)

The basis set (26) representation of the equation (39) is the three-term recursion relation
[18]

anyn−1 + bnyn + dn+1yn+1 = 0, n � 1 (48)

where

bn =
(

b +
μC

2b
+ ik

)
+ 2

(
b +

μC

2b

)
n + 2kt, (49)

an =
(

b − μC

2b
− ik

)
n, dn =

(
b − μC

2b
+ ik

)
n.

The functions

sn(t;μC) = θnpn(τ ; ζ ) (50)

are the ‘regular’ solutions of (48) with the initial conditions: s0 ≡ 1, s−1 ≡ 0. The polynomials
pn (47) of degree n in τ are orthogonal with respect to the weight function [18]

ρ(τ ; ζ ) = �
(

1
2 − iτ

)
�

(
1
2 + iτ

)
2π i

(−ζ )iτ+ 1
2 , (51)

where it is considered that |arg(−ζ )| < π . The corresponding orthogonality relation reads

i

ζm

(
ζ − 1

ζ

) ∫ ∞

−∞
dτ ρ(τ ; ζ )pn(τ ; ζ )pm(τ ; ζ ) = δnm. (52)

2.2. The discrete spectrum

For t0 < 0 the eigenfunctions of (39) corresponding to the discrete spectrum E (�) = γ 2
�

2 , γ� =
iκ�, κ� = − kt0

�
, � = 1, 2, . . . ,∞ are [25]

f�,m(ξ, η) = u�,m(ξ)v�,�−m−1(η), m = 0, 1, . . . , � − 1, (53)

where

u�,m(ξ) = e− i
2 kξ e− κ�ξ

2 1F1(−m, 1; κ�ξ) = e− i
2 kξ e− κ�ξ

2 Lm(κ�ξ) (54)

7
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and

v�,m(η) = e
i
2 kη e− κ�η

2 1F1(−m, 1; κ�η) = e
i
2 kη e− κ�η

2 Lm(κ�η). (55)

The solutions f�,m meet the orthogonality relation

κ3
�

2�

∫ ∞

0

∫ ∞

0
(ξ + η) dξ dη f�,m(ξ, η)[f�′,m′(ξ, η)]∗ = δ�,�′δm,m′ . (56)

It is readily verified that the expansions of u�,m(ξ) and v�,m(η) in a basis function (26)
series are

u�,m(ξ) =
∞∑

n=0

S(�,m)
n ψn(ξ) (57)

and

v�,m(η) =
∞∑

n=0

[
S(�,m)

n

]∗
ψn(η), (58)

where the coefficients are given by

S(�,m)
n = 2

√
2b(−)n

(m + 1)n

n!

(2b − κ� − ik)n(2b − κ� + ik)m

(2b + κ� + ik)n+m+1

× 2F1

(
−n,−m,−n − m; (2b + κ�)

2 + k2

(2b − κ�)2 + k2

)
. (59)

2.3. One-dimensional completeness relations

The eigensolution u(γ, τ, ξ) of (39) corresponding to the continuous spectrum (γ > 0) for
large ξ behaves as

u(γ, τ, ξ) ∼
ξ→∞

e− i
2 kξ e

πτ
2∣∣�(

1
2 + iτ

)∣∣ 2i√
γ ξ

sin

(
γ ξ

2
− τ ln(γ ξ) +

π

4
+ σ

)
, (60)

where σ = arg �
(

1
2 + iτ

)
. Therefore (see, e.g., [24, 26]),

γ

4

∣∣∣∣� (
1

2
+ iτ

)∣∣∣∣2

e−πτ

∫ ∞

0
ξ dξ u(γ, τ, ξ)[u(γ ′, τ, ξ)]∗ = πδ(γ − γ ′), (61)

and for τ > 0 (τ = Z0
γ

with fixed Z0 > 0)

ξ

∫ ∞

0
γ dγ

∣∣� (
1
2 + iτ

)∣∣2

4π
e−πτu(γ, τ, ξ)[u(γ, τ, ξ ′)]∗ = δ(ξ − ξ ′). (62)

On the other hand, if the functions u(γ, τ, ξ) are regarded as charge Sturmians [24], i.e.
the parameter τ is considered as the eigenvalue of the problem, whereas the momentum γ

remains constant, the corresponding orthogonality and completeness relations are given by
[24]

γ

∣∣∣∣� (
1

2
+ iτ

)∣∣∣∣2

e−πτ

∫ ∞

0
dξ u(γ, τ, ξ)[u(γ, τ ′, ξ)]∗ = 2πδ(τ − τ ′) (63)

and

γ

∫ ∞

−∞
dτ

∣∣� (
1
2 + iτ

)∣∣2

2π
e−πτu(γ, τ, ξ)[u(γ, τ, ξ ′)]∗ = δ(ξ − ξ ′). (64)

8
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Taking matrix elements of the completeness relation (64) we find

8bγ θn−m√
[4b2 + (γ + k)2][4b2 + (γ − k)2]

∫ ∞

−∞
dτ

∣∣� (
1
2 + iτ

)∣∣2

2π
(−ζ )iτpn(τ ; ζ ) [pn(τ ; ζ )]∗ = δn,m.

(65)

It may be noted that (65) is closely related to (52). To see this, let γ > 0. Then, it follows
from the definitions (46) that

(ζ − 1)

ζ
(−ζ )

1
2 = 8bγ√

[4b2 + (γ + k)2][4b2 + (γ − k)2]
. (66)

Further, the regular solution θnpn(τ ; ζ ) of the three-term recursion relation (48) is an even
function of γ , since the coefficients an, bn and dn depend on γ only through μC = 1

2 (k2 −γ 2).
Thus, replacing γ by −γ , and hence τ by −τ (θ → λ and λ → θ ) and ζ by ζ−1 in equation (47)
gives

θnpn(τ ; ζ ) = λn (−1)n

n!

�
(
n + 1

2 + iτ
)

�
(

1
2 + iτ

) 2F1

(
−n,

1

2
− iτ ;−n +

1

2
− iτ ; ζ−1

)
. (67)

Comparing equations (47) and (67) then yields the relation

θnpn(τ ; ζ ) = λn[pn(τ ; ζ )]∗, (68)

and hence

[pn(τ ; ζ )]∗ = ζ−npn(τ ; ζ ). (69)

From the argument above, we conclude that for γ > 0 the orthogonality relation (52) reduces
to (65).

2.4. The two-dimensional completeness relation

It follows from the relations (61) and (63) and analogous relations for v(γ, τ, ξ) that the
two-dimensional orthogonality relation for γ > 0 is given by

e−πτ0
γ 2

4

∣∣� (
1
2 + iτ

)∣∣2

2π

∣∣� (
1
2 + i(τ0 − τ)

)∣∣2

2π

∫ ∞

0

∫ ∞

0
(ξ + η) dξ dη{f (γ, τ, ξ, η)

× [f (γ ′, τ ′, ξ, η)]∗} = δ(γ − γ ′)δ(τ − τ ′). (70)

In turn, in the case t0 > 0 (where there are no bound states) it would appear reasonable that
the two-dimensional completeness relation would be given by

(ξ + η)

{
α

∫ ∞

0
dγ γ 2e−πτ0

∫ ∞

−∞
dτ

∣∣� (
1
2 + iτ

)∣∣2

2π

∣∣� (
1
2 + i(τ0 − τ)

)∣∣2

2π

× f (γ, τ, ξ, η)[f (γ, τ, ξ ′, η′)]∗
}

= δ(ξ − ξ ′)δ(η − η′). (71)

The integration over τ in (71) is performed on the assumption that τ is independent of γ .
To test this hypothesis and determine the normalizing factor α, we carried out the following
numerical experiments. First with some parameters t0 > 0, k > 0 and b we calculate the
matrix elements An1,n2;m1,m2 for the expression in the figure braces on the left-hand side of

9
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(71) in the basis (25):

An1,n2;m1,m2 = α

∫ ∞

0
dγ

64b2γ 2(−ζ )iτ0

[4b2 + (γ + k)2][4b2 + (γ − k)2]
θn1−m1λm2−n2

×
∫ ∞

−∞
dτ

∣∣� (
1
2 + iτ

)∣∣2

2π

∣∣� (
1
2 + i(τ0 − τ)

)∣∣2

2π

×pn1(τ ; ζ )pn2(τ0 − τ ; ζ )[pm1(τ ; ζ )pm2(τ0 − τ ; ζ )]∗. (72)

It should be noted that the value of (−ζ )iτ0 in this formula is determined by the condition
|arg(−ζ )| < π . Then the resulting matrix A is multiplied by the matrix

Q = Qξ ⊗ Iη + Iξ ⊗ Qη (73)

of the operator (ξ + η). Finally, using the condition

QA = Iξ ⊗ Iη (74)

we have obtained that α = 1
2 . Note that the infinite symmetric matrices Qξ and Qη are

tridiagonal [18]:

Q
ξ,η

n,n′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

2b
n, n′ = n − 1,

1

2b
(2n + 1), n′ = n,

− 1

2b
(n + 1), n′ = n + 1,

(75)

therefore the normalization condition (74) can be rewritten in the form

1

2b
δn2m2{−n1An1−1,n2;m1,m2 + (2n1 + 1)An1,n2;m1,m2 − (n1 + 1)An1+1,n2;m1,m2}

+
1

2b
δn1m1{−n2An1,n2−1;m1,m2 + (2n2 + 1)An1,n2;m1,m2

− (n2 + 1)An1,n2+1;m1,m2} = δn1m1δn2m2 . (76)

For t0 < 0 the completeness relation (71) transforms into

(ξ + η)

{
1

2

∫ ∞

0
dγ γ 2 e−πτ0

∫ ∞

−∞
dτ

∣∣� (
1
2 + iτ

)∣∣2

2π

∣∣� (
1
2 + i(τ0 − τ)

)∣∣2

2π

× f (γ, τ, ξ, η)[f (γ, τ, ξ ′, η′)]∗

+
∞∑

�=1

κ3
�

2�

�−1∑
m=0

f�,m,�−m−1(ξ, η)
[
f�,m,�−m−1(ξ

′, η′)
]∗

}
= δ(ξ − ξ ′)δ(η − η′).

(77)

In this case the matrix A with elements

An1,n2;m1,m2 =
∫ ∞

0
dγ

32b2γ 2(−ζ )iτ0

[4b2 + (γ + k)2][4b2 + (γ − k)2]
θn1−m1λm2−n2

×
∫ ∞

−∞
dτ

∣∣� (
1
2 + iτ

)∣∣2

2π

∣∣� (
1
2 + i(τ0 − τ)

)∣∣2

2π

×pn1(τ ; ζ )pn2(τ0 − τ ; ζ )[pm1(τ ; ζ )pm2(τ0 − τ ; ζ )]∗

+
∞∑

�=1

κ3
�

2�

�−1∑
m=0

S(�,m)
n1

S(�,�−m−1)
m2

[
S(�,�−m−1)

n2
S(�,m)

m1

]∗
(78)

10
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is also inverse to the matrix Q (73). The expression (78) can be rewritten, in view of (66) and
(69), as

An1,n2;m1,m2 = −1

2

∫ ∞

0
dγ

{(
ζ − 1

ζ

)2
θn1+m2

λn2+m1

∫ ∞

−∞
dτ ρ(τ ; ζ )ρ(τ0 − τ ; ζ )

×pn1(τ ; ζ )pn2(τ0 − τ ; ζ )pm1(τ ; ζ )pm2(τ0 − τ ; ζ )

}

+
∞∑

�=1

κ3
�

2�

�−1∑
m=0

S(�,m)
n1

S(�,�−m−1)
m2

[
S(�,�−m−1)

n2
S(�,m)

m1

]∗
. (79)

To illustrate the accuracy which can be obtained with the help of a standard FORTRAN
numerical integration over an infinite interval code, the matrix elements An′

1,n
′
2;m1,m2 (79) and

the corresponding left-hand side of (76) in some (diagonal and nondiagonal) cases have been
calculated. Here we put b = 0.3, k = 0.15 and t0 = ±0.5. The results are presented in
table 1.

3. Contour integrals

Note that expressing the resolvent of the one-dimensional operator
[
ĥξ + 2kt + μCξ

]
requires

two linearly independent solutions of (39). Irregular solutions of (39) are expressed in terms
of the confluent hypergeometric function [23]

w(±)(γ, τ, ξ) = e
i
2 (±γ−k)ξU

(
1
2 ± iτ, 1;∓γ ξ

)
. (80)

The corresponding solutions of the three-term recursion relation (48) are

c(+)
n (t;μC) = θn+1q(+)

n (τ ; ζ ), c(−)
n (t;μC) = λn+1q(−)

n (τ ; ζ ), (81)

where

q(+)
n (τ ; ζ ) = (−)n

n!�( 1
2 +iτ)

�(n+ 3
2 +iτ) 2F1

(
1
2 + iτ, n + 1; n + 3

2 + iτ ; ζ−1
)
,

q(−)
n (τ ; ζ ) = (−)n

n!�( 1
2 −iτ)

�(n+ 3
2 −iτ) 2F1

(
1
2 − iτ, n + 1; n + 3

2 − iτ ; ζ
)
.

(82)

In particular, the functions

w̃(±)(γ, τ, ξ) = 2i
√

2b

2b − i(γ − k)

(
−2b + i(γ − k)

2b − i(γ + k)

)iτ+ 1
2 e−πτ

θ�
(

1
2 ± iτ

) ∞∑
n=0

c(±)
n (t;μC)ψn(ξ)

(83)

tend to w(±)(γ, τ, ξ) as ξ → ∞.
The matrix elements of the resolvent of [ĥξ + 2kt + μCξ ] can be written in the form [18]

g(+)
n,m(t;μC) = i

2γ

(
ζ − 1

ζ

)
θn−m

ζm
pn<

(τ ; ζ )q(+)
n>

(τ ; ζ ) (84)

and

g(−)
n,m(t;μC) = i

2γ

(
ζ − 1

ζ

)
θn−m

ζm
pn<

(τ ; ζ )ζ n>+1q(−)
n>

(τ ; ζ ), (85)

where n> and n< are the greater and lesser of n and m. Note that c(+)
n

(
c(−)
n

)
are defined in the

upper (lower) half of the complex γ -plane where |ζ | � 1 (|ζ | � 1). To analytically continue
c(+)
n onto the lower half of the γ -plane the relation [18]

c(+)
n (t;μC) = c(−)

n (t;μC) + 2π iρ(τ ; ζ )θn+1pn(τ ; ζ ) (86)

can be used.
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Table 1. An′
1,n′

2;m1,m2
involved into the normalization condition (76) and the left-hand side of (76) values. We put the following values of parameters: b = 0.3, k = 0.15, t0 = ±0.5.

The matrix elements were evaluated numerically by using (a) equation (79) and (b) the integral representation (92) with the parameters E0 = 50 and ϕ = −π/3. These calculations were
performed with FORTRAN standard code.

n1 = m1 = 3, n2 = m2 = 2

A22;32 A32;32 A42;32 A31;32 A33;32 the lhs of (76)

t0 > 0
(a)

(b)

0.122 857 1428
0.122 857 2055

0.164 502 1645
0.164 502 3080

0.112 705 6277
0.112 705 5134

0.118 095 2380
0.118 095 2862

0.106 147 1861
0.106 148 0934

1.000 000 0000
0.999 998 6214

t0 < 0
(a)

(b)

0.122 857 1432
0.122 857 1040

0.164 502 1641
0.164 502 1610

0.112 705 6279
0.112 705 3228

0.118 095 2386
0.118 095 2743

0.106 147 1862
0.106 147 2855

0.999 999 9877
1.000 001 5392

n1 = m1 = 3, n2 = 3,m2 = 2

A23;32 A33;32 A43;32 A32;32 A34;32 the lhs of (76)

t0 > 0
(a)

(b)

0.100 259 7402
0.100 259 7440

0.106 147 1861
0.106 148 0934

0.090 469 5304
0.090 468 3789

0.164 502 1645
0.164 502 3080

0.082 474 1924
0.082 471 8107

−0.555 111 5123 × 10−15

0.439 896 4458 × 10−4

t0 < 0
(a)

(b)

0.100 259 7401
0.100 259 5989

0.106 147 1862
0.106 147 2855

0.090 469 5303
0.090 466 9943

0.164 502 1641
0.164 502 1610

0.082 474 1924
0.082 478 2355

0.538 181 0552 × 10−8

−0.700 351 3032 × 10−5

n1 = 3, m1 = 2, n2 = 3,m2 = 2

A23;22 A33;22 A43;22 A32;22 A34;22 the lhs of (76)

t0 > 0
(a)

(b)

0.122 857 1428
0.122 857 5807

0.100 259 7402
0.100 259 7454

0.083 311 6883
0.083 312 1690

0.122 857 1428
0.122 857 5170

0.083 311 6883
0.083 311 0148

−0.854 871 7289 × 10−14

−0.265 367 4140 × 10−5

t0 < 0
(a)

(b)

0.122 857 1432
0.122 857 3492

0.100 259 7400
0.100 259 6377

0.083 311 6883
0.083 311 9210

0.122 857 1432
0.122 857 2818

0.083 311 6883
0.083 311 8111

−0.851 979 5091 × 10−8

−0.648 893 0841 × 10−5
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C
→

←

ε

Figure 1. The path of integration C in (90).

In [18] we obtained the basis set (25) representation of the resolvent for the two-
dimensional operator [ĥξ + 2kt + μCξ ] + [ĥη + 2k(t0 − t) + μCη]. In particular, the matrix
elements of the two-dimensional Green’s function can be expressed as the convolution integral

G
(±)

n1,n2;m1,m2
(t0;μC) = i

(
ζ − 1

ζ

)
λm2−n2

ζm2

∫ ∞

−∞
dτ ρ(τ0 − τ ; ζ )

× g(±)
n1,m1

(t;μC)pn2(τ0 − τ ; ζ )pm2(τ0 − τ ; ζ ). (87)

Note that in this case only the regular solutions of (40) discrete analogues λ−npn(τ0 − τ ; ζ )

are used.
Let us consider the integral

I1 = 1

2π i

∫ ∞

−∞
γ dγG

(+)

n1,n2;m1,m2
(t0;μC). (88)

Note that by replacing γ → −γ (and hence θ → λ, λ → θ, ζ → 1/ζ, τ → −τ and
τ0 → −τ0) in equation (87) G

(+)

n1,n2;m1,m2
(t0;μC) is transformed to G

(−)

n1,n2;m1,m2
(t0;μC). Thus,

for the integral I1 we obtain

I1 = 1

2π i

∫ ∞

0
γ dγ

{
G

(+)

n1,n2;m1,m2
(t0;μC) − G

(−)

n1,n2;m1,m2
(t0;μC)

}
. (89)

Inserting equations (87), (84) and (85) into equation (89), we find, in view of (86), that I1

coincides with the integral on the right-hand side of (79).
Now, we consider the integral

1

2π i

∫
C

dE G(+)

(
t0; k2

2
− E

)
, (90)

taken along the contour in the complex E-plane shown in figure 1. The contour C passes in

a negative direction (clockwise) round all the points E (�) = − κ2
�

2 (filled circles in figure 1
which accumulate at the origin) and the cut along the right-half of the real axis and is closed at
infinity (see, e.g., [27]). The corresponding matrix element of the integral along the two sides
of the cut is equal to I1 (88) (this is circumstantial evidence that the normalizing factor α in the
completeness relation (71) is equal to 1

2 ). On the other hand, the integration along a contour
enclosing E (�) reduces to (−1) times the double sum of the residues of the integrand at the
points τ (m) = i

(
m + 1

2

)
,m = 0, 1, . . . and E (�) = − (kt0)

2

2�2 , � = 1, 2, . . . , which are the poles
of the gamma functions �

(
1
2 + iτ

)
and �

(
1
2 + i(τ0 − τ)

) = �
(
m + 1 + kt0√−2E (�)

)
, respectively.

It is readily shown that the matrix element of this part of the integral (90) coincides with the
double sum in (79). Thus, the integral (90) is equal to the matrix A. The contour C can be
deformed, for instance, into a straight line parallel to the real axis. The resulting path C1 shown
in figure 2 runs above the cut and the bound-state poles of G(+)

(
t0; k2

2 − E
)
. The contour C1

can be rotated about some point E0 on the right-half of the real axis through an angle ϕ in the

13
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C

→

→ εC
1

2

0

ϕ

ε

Figure 2. The path of integration C2 in (92).

range (0,−π) [27]; see the contour C2 in figure 2. Note that E0 should be positive, since only
in this case it is possible to bend the contour of integration around all the bound-state poles.
The initial contour C1 (and C) lies on the physical energy sheet (0 < arg(E) < 2π). The
part of C2 above E0 remains on the physical sheet, whereas the part of the contour below E0

(which is depicted by the dashed line) moves onto the unphysical sheet (−2π < arg(E) < 0).
Further, in view of the restriction −π < ϕ < 0 the argument of E on the contour C2 obeys
the condition −π < arg(E) < π , and therefore the momentum γ = √

2E here is the standard
branch of the square root. It should be marked that for calculations of c(+)

n in the lower-half of
the γ -plane (Im(γ ) < 0) the analytic continuation formula (86) can be used. Note that on C2

the energy variable is given by

E = E0 + eiϕE, (91)

where E0 > 0, E is real and runs from −∞ to ∞. Thus, we obtain the following representation
of the matrix A (which is inverse to the matrix Q (73)):

A = 1

2π i

∫
C2

dE G(+)

(
t0; k2

2
− E

)
= eiϕ

2π i

∫ ∞

−∞
dE G(+)

(
t0; k2

2
− E0 − eiϕE

)
= Q−1. (92)

The integrals (92) with parameters E0 = 50 and ϕ = −π/3 have been calculated with
the help of a standard code. The results listed in table 1 allow us to estimate the accuracy of
the calculations. Note that we presented only the real part of the integrals, since their image
part is found to be of the order 10−5. A comparison of (a) and (b) results shows that a serious
effort should be made to provide an adequate approximation to the hypergeometric functions
in the integrand on the right-hand side of equation (92).

4. Six-dimensional Green’s function matrix

Using the relation (92) we can rewrite the expression (33) for the six-dimensional Coulomb
Green’s function matrix as the contour integral

G = ℵ
μ23μ13

∫
C2

dE1

∫
C2

dE2 G
(+)
1

(
t23; k2

23

2
− E1

)
⊗ G

(+)
2

(
t13; k2

13

2
− E2

)
⊗ G

(+)
3

(
t12; k2

12

2
− E3

)
, (93)

where Ej = k2
ls

2 − μlsCj . This also allows us to determine the normalizing factor ℵ. Indeed, it
follows from (92) that the third term inside the figure brackets on the right-hand side of (36)

14
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is proportional to the unit matrix:[
Q1

∫
C2

dE1G
(+)
1

(
t23; k2

23

2
− E1

)]
⊗

[
Q2

∫
C2

dE2G
(+)
2

(
t13; k2

13

2
− E2

)]
⊗ I3

= (2π i)2I1 ⊗ I2 ⊗ I3. (94)

Consider the first two terms in the figure braces in (36). For the energy E3 = k2
12
2 +μ12(C1 +C2)

we have

E3 = k2
12

2
+

μ12

μ23

(
k2

23

2
− E1

)
+

μ12

μ13

(
k2

13

2
− E2

)
. (95)

On the other hand, on the contours C2 the energy variables Ej , j = 1, 2 are given by

Ej = E0j + Ej eiϕ, (96)

where ϕ < 0, E0j is an arbitrary positive parameter, Ej is real and runs from −∞ to ∞.
Hence, for the energy E3 (95) we obtain

E3 =
[
k2

12

2
+

μ12

μ23

(
k2

23

2
− E01

)
+

μ12

μ13

(
k2

13

2
− E02

)]
+

(
−μ12

μ23
E1 − μ12

μ13
E2

)
eiϕ. (97)

Thus, E3 can be expressed in the form

E3 = E03 + E3 eiϕ, (98)

where E03 and E3 denote the term in the square braces and the real factor in front of the
exponent in (97), respectively. Since E03 should be positive, therefore the positive parameters
E01 and E02 have to satisfy the constraint

μ12

μ23
E01 +

μ12

μ13
E02 <

k2
12

2
+

μ12

μ23

k2
23

2
+

μ12

μ13

k2
13

2
. (99)

Now, we consider the integral

I2 =
∫
C2

dE1G
(+)
3

(
t12; k2

12

2
− E3

)
. (100)

With fixed E2, in view (97), (98) and (92), we see that

I2 = eiϕ
∫ ∞

−∞
dE1 G

(+)
3

(
t12; k2

12

2
− E3

)
= −μ23

μ12
eiϕ

∫ ∞

−∞
dE3 G

(+)
3

(
t12; k2

12

2
− E3

)
= − μ23

μ12

∫
C2

dE3 G
(+)
3

(
t12; k2

12

2
− E3

)
= −2π i

μ23

μ12
Q−1

3 . (101)

Similarly, we obtain∫
C2

dE2 G
(+)
3

(
t12; k2

12

2
− E3

)
= −2π i

μ13

μ12
Q−1

3 . (102)

Inserting (101), (102) and (94) into (36) then yields

hG = ℵ4π2I1 ⊗ I2 ⊗ I3. (103)

Thus, from (103) we conclude that

ℵ = 1

4π2
. (104)
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5. Conclusion

The Sturmian basis set representation of the resolvent for the asymptotic three-body Coulomb
wave operator is obtained, which can be used in the discrete analog of the Lippmann–
Schwinger equation for the three-body continuum wavefunction. The six-dimensional Green’s
function matrix is expressed as a convolution integral over separation constants. The
integrand of this contour integral involves Green’s function matrices corresponding to the
two-dimensional operators which are constituents of the full six-dimensional wave operator.
The completeness relation of the eigenfunctions of these two-dimensional operators is used to
define the appropriate paths of integration of the convolution integral.
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